博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu2767之强联通缩点
阅读量:6640 次
发布时间:2019-06-25

本文共 3027 字,大约阅读时间需要 10 分钟。

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2768    Accepted Submission(s): 1038


Problem Description
Consider the following exercise, found in a generic linear algebra textbook.
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove?

Can you help me determine this?

 

Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 

Output
Per testcase:
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 

Sample Input
 
2 4 0 3 2 1 2 1 3
 

Sample Output
 
4 2
#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define INF 99999999typedef long long LL;using namespace std;const int MAX=20000+10;int n,m,size,top,index,ind,oud;int head[MAX],dfn[MAX],low[MAX],stack[MAX];int mark[MAX],flag[MAX];//dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) struct Edge{ int v,next; Edge(){} Edge(int V,int NEXT):v(V),next(NEXT){}}edge[50000+10];void Init(int num){ for(int i=0;i<=num;++i)head[i]=-1; size=top=index=ind=oud=0;}void InsertEdge(int u,int v){ edge[size]=Edge(v,head[u]); head[u]=size++;}void tarjan(int u){ if(mark[u])return; dfn[u]=low[u]=++index; stack[++top]=u; mark[u]=1; for(int i=head[u];i != -1;i=edge[i].next){ int v=edge[i].v; tarjan(v); if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行 } if(dfn[u] == low[u]){ ++ind,++oud;//计算缩点后点的个数,方便计算入度和出度 while(stack[top] != u){ mark[stack[top]]=-1; low[stack[top--]]=low[u]; } mark[u]=-1; --top; }}int main(){ int t,u,v; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); Init(n); for(int i=0;i

转载地址:http://mkovo.baihongyu.com/

你可能感兴趣的文章
poj 3592 Instantaneous Transference 【SCC +缩点 + SPFA】
查看>>
简单的WINFORM窗口,体验WINFORM带来的快感
查看>>
POJ 数学题目(转载)
查看>>
python SMTP邮件发送
查看>>
java中的BigDecimal和String的相互转换
查看>>
Android中Adapter总结
查看>>
数据解析:从某种格式的数据中提取自己所需的数据
查看>>
ArrayList源码深度解析
查看>>
关爱通用户登录支付接口实例
查看>>
angularJS一个比较好的分页地址
查看>>
(转)CWnd与HWND的区别与转换
查看>>
豆瓣有无验证码登陆+selenium
查看>>
android:sharedUserId
查看>>
简单的Windows 服务的安装和卸载
查看>>
IOS开发——正则表达式验证手机号、密码
查看>>
VC++ 内存机理的个人理解(一)——地址和指针的关系
查看>>
QT+VS
查看>>
SQL2008安装详细教程
查看>>
获得驱动器信息卷设备&&Ring3得到磁盘文件系统(NTFS WIN10)
查看>>
js 事件点击 显示 隐藏
查看>>